spot_img

Los mis­te­rios de los ra­yos cós­mi­cos se re­suel­ven bajo el hie­lo de la An­tár­ti­da

Fecha:

Entre los incontables enigmas del universo están los neu­tri­nos, unas partículas ‘fantasma’ muy difíciles de detectar y sin carga eléctrica, que pue­den re­ve­lar­nos in­for­ma­ción so­bre fe­nó­me­nos del uni­ver­so en los que la luz que­da atra­pa­da, como los agu­je­ros ne­gros.

Según publica hoy la revista Science, un equipo internacional de más de 400 científicos encontraron por primera vez evidencias de emisiones de neutrinos de alta energía que provienen de la galaxia cercana NGC1068 –también conocida como Messier 77–. Esta es una de las más conocidas y mejor estudiadas hasta la fecha. La detección se realizó en el Observatorio de Neutrinos IceCube, una red de miles de sensores ubicada a más de un kilómetro de profundidad bajo el hielo de la Antártida.

“La detección valida el campo de la astronomía de neutrinos. La galaxia NGC1068 es la primera fuente puntual de neutrinos ‘constante’ que se observa. Pone de manifiesto que existen fuentes de neutrinos –cosa que ya sabíamos­– y que se pueden detectar –cosa que sospechábamos, pero no sabíamos a ciencia cierta. En resumen, su­po­ne el inicio de una nue­va ma­ne­ra de ver el Uni­ver­so usan­do los neu­tri­nos como men­sa­je­ros cós­mi­cos.”, explica Juan A. Aguilar, coordinador de análisis de IceCube y profesor de la Uni­ver­si­dad Li­bre de Bru­se­las.

Estudiar galaxias a kilómetros bajo el Polo Sur

Observada por primera vez en 1780, la galaxia Messier 77 se ubica en la constelación de Cetus, a 47 millones de años luz y se puede observar con unos prismáticos potentes. Para contextualizar, el Sol se encuentra a 8,3 minutos luz de nosotros, la Estrella Polar a 320 años luz y el centro de la Vía Láctea a unos 26.000 años luz.

Messier 77 es una galaxia activa, –active galactic nucleus (AGN) en inglés– por lo que tiene una luminosidad excepcionalmente alta y variable que muestra signos de la existencia de procesos energéticos en su zona central. El ha­llaz­go apun­ta a que las ga­la­xias ac­ti­vas ac­túan como fuen­tes de ra­yos cós­mi­cos, que a su vez ge­ne­ran las emi­sio­nes de neu­tri­nos. Los rayos cósmicos representan la ra­dia­ción más ener­gé­ti­ca que lle­ga a la Tie­rra des­de el es­pa­cio, pero hasta ahora no había certezas sobre dónde vienen y dónde se aceleran.

A diferencia de la luz, los neutrinos escapan de entornos extremadamente densos en el universo y llegan a la Tierra sin ser afectados por la materia y los campos electromagnéticos del espacio extragaláctico. Aunque los científicos imaginaron la astronomía de neutrinos hace más de 60 años, la débil interacción de los neutrinos con la materia y la radiación hace que su detección sea extremadamente difícil. Como no se ven alterados por campos magnéticos o nubes de polvo o gas, los neutrinos son mensajeros directos de los objetos de los que provienen, como los sitios alrededor de agujeros negros.

“Detectamos 80 neutrinos que se agrupan alrededor de las coordenadas astronómicas de la galaxia NGC1068. La evidencia se refuerza en el hecho de que estos neutrinos tienen energías más altas que las producidas en la atmósfera”, explica Francis Halzen, investigador principal de IceCube y profesor de física en la Universidad de Wisconsin–Madison.

Observatorio IceCube

El estudio fue fruto de la colaboración internacional de un equipo de investigación de más de 400 personas, que analizó los datos recopilados por el Observatorio de Neutrinos IceCube entre 2011 y 2020 para buscar fuentes puntuales de emisión de neutrinos.

Aunque los neutrinos se comportan como ‘par­tí­cu­las fan­tas­ma’, los científicos idearon estrategias para su estudio. El Ob­ser­va­to­rio de Neu­tri­nos Ice­Cu­be, es un enorme te­les­co­pio de neu­tri­nos que abarca un kilómetro cúbico de hielo instrumentalizado a profundidades de 1,5 a 2,5 kilómetros por debajo de la superficie de la Antártida, cerca del Polo Sur.

Algunos de los neutrinos que provienen del espacio exterior interaccionan con moléculas y producen otra partícula, que se llama muon, una especie de electrón con más masa. Cuando el muon se encuentra en un medio transparente, como el agua o el hielo, emite la llamada luz Cherenkov, una luz azul que sí es visible. Bajo kilómetros de hielo, en el IceCube se producen unas condiciones adecuadas para que las señales de neutrinos no se confundan con otras que no penetran a tan grandes profundidades y puedan ser estudiadas.

El ob­ser­va­to­rio Ice­Cu­be de­tec­tó por pri­me­ra vez una fuen­te as­tro­fí­si­ca de neu­tri­nos de alta ener­gía en 2018. La detección TXS 0506+056 se trataba de un blázar conocido –una fuente de energía asociada a un agujero negro– ubicado en el hombro izquierdo de la constelación de Orión, a 4.000 millones de años luz de distancia.

A diferencia de la detección de ahora de Messier 77, una observación ‘constante’, la detección de TXS 0506+056 es calificada por los investigadores de IceCube como un ‘destello’ de neutrinos.

La astronomía de neutrinos: una nueva mirada sobre el universo

Todos hemos observado alguna noche nuestra galaxia con curiosidad. La Vía Lác­tea domina el paisaje que contemplamos del cielo nocturno en el espectro visible. Pero este no es el caso de las emisiones de neutrinos.

“Nuestra propia galaxia es un desierto de neutrinos. Tras identificar que las galaxias activas actúan como aceleradoras de rayos cósmicos, una razón sencilla puede ser que el agujero negro del centro de nuestra galaxia no ha estado activo durante mucho tiempo”, argumenta Francis Halzen.

Los neu­tri­nos po­drían ayu­dar a re­sol­ver gran­des enig­mas como el de la ma­te­ria os­cu­ra, de la que se com­po­ne un 80 % del uni­ver­so, pero que no sa­be­mos con cer­te­za qué es.

“El desafío más grande es precisamente poder detectar otras fuentes. La galaxia NGC1068 es muy brillante y está muy cerca, por eso ha sido la primera y ha sido relativamente fácil de detectar. Para poder observar muchas otras fuentes se necesita un telescopio más grande que IceCube”, explica Aguilar.

Actualmente, ya está en desarrollo el IceCube-Gen2, una actualización de este laboratorio de neutrinos que ampliará drásticamente el volumen de detección. Esto permitirá detectar neutrinos a un ritmo mucho más rápido e identificar fuentes más lejanas o menos intensas que NGC1068.

Imágenes e información brindadas por https://noticiasncc.com/

DEJA UNA RESPUESTA

Por favor ingrese su comentario!
Por favor ingrese su nombre aquí

Últimas Noticias:

Noticias relacionadas

Putin ordena “producción en serie” de misiles Oreshnik

El presidente de Rusia afirmó que los sistemas de defensa occidentales no pueden interceptar el nuevo misil balístico...

Países ricos ofrecen 250 mmdd anuales en COP29; no es suficiente

La presidencia azerbaiyana de la COP29 planteó este viernes que los países ricos contribuyan con 250 mil millones de dólares anuales a...

CPI emite órdenes de arresto contra Netanyahu y Deif

La Corte Penal Internacional (CPI) de La Haya emitió este jueves órdenes de arresto contra el primer ministro israelí,...

Ucrania dispara misiles estadounidenses de largo alcance contra Rusia

La guerra entre Rusia y Ucrania ha alcanzado un nuevo punto crítico con el primer ataque ucraniano utilizando misiles balísticos ATACMS,...